Dopamine receptors set the pattern of activity generated in subthalamic neurons.

نویسندگان

  • J Baufreton
  • Z-T Zhu
  • M Garret
  • B Bioulac
  • S W Johnson
  • A I Taupignon
چکیده

Information processing in the brain requires adequate background neuronal activity. As Parkinson's disease progresses, patients typically become akinetic; the death of dopaminergic neurons leads to a dopamine-depleted state, which disrupts information processing related to movement in a brain area called the basal ganglia. Using agonists of dopamine receptors in the D1 and D2 families on rat brain slices, we show that dopamine receptors in these two families govern the firing pattern of neurons in the subthalamic nucleus, a crucial part of the basal ganglia. We propose a conceptual frame, based on specific properties of dopamine receptors, to account for the dominance of different background firing patterns in normal and dopamine-depleted states.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dopaminergic Control of the Globus Pallidus through Activation of D2 Receptors and Its Impact on the Electrical Activity of Subthalamic Nucleus and Substantia Nigra Reticulata Neurons

The globus pallidus (GP) receives dopaminergic afferents from the pars compacta of substantia nigra and several studies suggested that dopamine exerts its action in the GP through presynaptic D2 receptors (D2Rs). However, the impact of dopamine in GP on the pallido-subthalamic and pallido-nigral neurotransmission is not known. Here, we investigated the role of dopamine, through activation of D2...

متن کامل

D2-like dopamine receptors modulate SKCa channel function in subthalamic nucleus neurons through inhibition of Cav2.2 channels.

The activity patterns of subthalamic nucleus (STN) neurons are intimately related to motor function/dysfunction and modulated directly by dopaminergic neurons that degenerate in Parkinson's disease (PD). To understand how dopamine and dopamine depletion influence the activity of the STN, the functions/signaling pathways/substrates of D2-like dopamine receptors were studied using patch-clamp rec...

متن کامل

Dual effect of high-frequency stimulation on subthalamic neuron activity.

Although it is well known that high-frequency stimulation (HFS) of the subthalamic nucleus (STN) alleviates the cardinal symptoms of Parkinson's disease, the underlying mechanisms are not fully understood. We investigated the effect of stimulation from low to high frequencies on rat STN neurons in naive and dopamine-depleted slices using whole-cell, current-clamp techniques and on-line artifact...

متن کامل

D5 (not D1) dopamine receptors potentiate burst-firing in neurons of the subthalamic nucleus by modulating an L-type calcium conductance.

Dopamine is a crucial factor in basal ganglia functioning. In current models of basal ganglia, dopamine is postulated to act on striatal neurons. However, it may also act on the subthalamic nucleus (STN), a key nucleus in the basal ganglia circuit. The data presented here were obtained in brain slices using whole-cell patch clamp. They reveal that D5 dopamine receptors strengthen electrical act...

متن کامل

Localization and function of dopamine receptors in the subthalamic nucleus of normal and parkinsonian monkeys.

The subthalamic nucleus (STN) receives a dopaminergic innervation from the substantia nigra pars compacta, but the role of this projection remains poorly understood, particularly in primates. To address this issue, we used immuno-electron microscopy to localize D1, D2, and D5 dopamine receptors in the STN of rhesus macaques and studied the electrophysiological effects of activating D1-like or D...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • FASEB journal : official publication of the Federation of American Societies for Experimental Biology

دوره 19 13  شماره 

صفحات  -

تاریخ انتشار 2005